Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To explore controls on megathrust behavior and its connection with forearc deformation, we studied the Andreanof segment of the Aleutian Subduction Zone (offshore Alaska, USA), which has a simple geological history as a relatively young intra-oceanic subduction zone. Here, the forearc shows greater uplift and compression in the strongly coupled Adak region compared to the weakly coupled Atka region. Using multichannel seismic reflection data, we found that the incoming plate in both regions exhibits similar characteristics along the segment, suggesting that its properties do not account for the varying megathrust behavior and forearc deformation. Instead, differences between the Atka and Adak regions in the thickness of the methane hydrate stability zone, as marked by a bottom-simulating reflector, suggest more heat advection, and thus dewatering, in the Adak region, where the more developed fault network may enable fluid drainage, thereby lowering pore pressure at the megathrust and promoting coupling. Higher coupling allows for seismic and stress cycling that would sustain forearc permeability by faulting. Our results suggest a feedback between deformation and coupling that may be active or latent in other more complex subduction zones but in concert with or masked by other factors.more » « lessFree, publicly-accessible full text available January 9, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments.more » « less
-
Two-dimensional seismic Vp profile from MacGregor et al. (2023), including positions of the seafloor, the upper reflector, and the lower reflector along the profile. The Vp model is in netCDF-4 format and the others are in ascii format and contain the position along the line and depth below sea level. The origin of the profile is 20.49˚N, 155.8237˚W, and the azimuth of the profile is 46˚ from north.Reference: MacGregor, B. G., Dunn, R. A., Watts, A. B., Xu, C., & Shillington, D. J. (2023). A seismic tomography, gravity, and flexure study of the crust and upper mantle structure of the Hawaiian Ridge: 1. Journal of Geophysical Research: Solid Earth, 128, e2023JB027218. https://doi. org/10.1029/2023JB027218more » « less
-
Abstract Oceanic plates experience extensive normal faulting as they bend and subduct, enabling fracturing of the incoming lithosphere. Debate remains about the relative importance of pre‐existing faults, plate curvature and other factors controlling the extent and style of bending‐related faulting. The subduction zone off the Alaska Peninsula is an ideal place to investigate controls on bending faulting as the orientation of the abyssal‐hill fabric with respect to the trench and plate curvature vary along the margin. Here, we characterize faulting between longitudes 161°W and 155°W using newly collected multibeam bathymetry data. We also use a compilation of seismic reflection data to constrain patterns of sediment thickness on the incoming plate. Although sediment thickness increases over 1 km from 156°W to 160°W, most sediments were deposited prior to the onset of bending faulting and thus should have limited impact on the expression of bend‐related fault strikes and throws in bathymetry data. Where magnetic anomalies trend subparallel to the trench (<30°) west of ∼156°W, bending faults parallel magnetic anomalies, implying that bending faults reactivate pre‐existing structures. Where magnetic anomalies are highly oblique (>30°) to the trench east of 156°W, no bending faults are observed. Summed fault throws increase to the west, including where pre‐existing structure orientations are constant (between 157 and 161°W), suggesting that another factor such as the increase in slab curvature must influence bending faulting. However, the westward increase in summed fault throws is more abrupt than expected for gradual changes in slab bending alone, suggesting potential feedbacks between pre‐existing structures, slab dip, and faulting.more » « less
-
Abstract Half‐graben basins bounded by border faults typify early‐stage continental rifts. Deciphering the role that intra‐rift faults play in rift basin development is challenging as patterns of early‐stage faulting are commonly overprinted by subsequent deformation; yet the characterization of these faults is crucial to understand the fundamental controls on their evolution, their contribution to rift opening, and to assess their seismic hazard. By integrating multiple offshore seismic reflection data sets with age‐dated drill core, late‐Quaternary and cumulative faulting patterns are characterized in the Central and South Basins of the Malawi (Nyasa) Rift, an active, early‐stage rift system. Almost all intra‐rift faults offset a late‐Quaternary lake lowstand surface, suggesting they are active and should be considered in hazard assessments. Fault throw profiles reveal sawtooth patterns indicating segmented slip histories. Observed extension on intra‐rift faults is approximately twice that predicted from hanging wall flexure of the border fault, suggesting that intra‐rift faults accommodate a proportion of the regional extension. Cumulative and late‐Quaternary throws on intra‐rift faults are correlated with throw measured on the border fault in the Central Basin, whereas an anticorrelation is observed in the South Basin. Viewed in a regional context, these differences do not relate solely to the proposed southward younging of the rift. Instead, it is inferred that the distribution of extension is also influenced by variations in lithospheric structure and crustal heterogeneities that are documented along the rift axis.more » « less
-
Abstract Detailed models of crustal structure at volcanic passive margins offer insight into the role of magmatism and the distribution of igneous addition during continental rifting. The Eastern North American Margin (ENAM) is a volcanic passive margin that formed during the breakup of Pangea ∼200 Myr ago. The offshore, margin‐parallel East Coast Magnetic Anomaly (ECMA) is thought to mark the locus of syn‐rift magmatism. Previous widely spaced margin‐perpendicular studies seismically imaged igneous addition as seaward dipping reflectors (SDRs) and high velocity lower crust (HVLC; >7.2 km/s) beneath the ECMA. Along‐strike imaging is necessary to more accurately determine the distribution and volume of igneous addition during continental breakup. We use wide‐angle, marine active‐source seismic data from the 2014–2015 ENAM Community Seismic Experiment to determine crustal structure beneath a ∼370‐km‐long section of the ECMA. P‐wave velocity models based on data from short‐period ocean bottom seismometers reveal a ∼21‐km‐thick crust with laterally variable lower crust velocities ranging from 6.9 to 7.5 km/s. Sections with HVLC (>7.2 km/s) alternate with two ∼30‐km‐wide areas where the average velocities are less than 7.0 km/s. This variable structure indicates that HVLC is discontinuous along the margin, reflecting variable amounts of intrusion along‐strike. Our results suggest that magmatism during rifting was segmented. The HVLC discontinuities roughly align with locations of Mid‐Atlantic Ridge fracture zones, which may suggest that rift segmentation influenced later segmentation of the Mid‐Atlantic Ridge.more » « less
-
Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) is a shoreline-crossing passive- and active-source seismic experiment that took place from May 2018 through August 2019 along an ∼700 km long section of the Aleutian subduction zone spanning Kodiak Island and the Alaska Peninsula. The experiment featured 105 broadband seismometers; 30 were deployed onshore, and 75 were deployed offshore in Ocean Bottom Seismometer (OBS) packages. Additional strong-motion instruments were also deployed at six onshore seismic sites. Offshore OBS stretched from the outer rise across the trench to the shelf. OBSs in shallow water (<262 m depth) were deployed with a trawl-resistant shield, and deeper OBSs were unshielded. Additionally, a number of OBS-mounted strong-motion instruments, differential and absolute pressure gauges, hydrophones, and temperature and salinity sensors were deployed. OBSs were deployed on two cruises of the R/V Sikuliaq in May and July 2018 and retrieved on two cruises aboard the R/V Sikuliaq and R/V Langseth in August–September 2019. A complementary 398-instrument nodal seismometer array was deployed on Kodiak Island for four weeks in May–June 2019, and an active-source seismic survey on the R/V Langseth was arranged in June 2019 to shoot into the AACSE broadband network and the nodes. Additional underway data from cruises include seafloor bathymetry and sub-bottom profiles, with extra data collected near the rupture zone of the 2018 Mw 7.9 offshore-Kodiak earthquake. The AACSE network was deployed simultaneously with the EarthScope Transportable Array (TA) in Alaska, effectively densifying and extending the TA offshore in the region of the Alaska Peninsula. AACSE is a community experiment, and all data were made available publicly as soon as feasible in appropriate repositories.more » « less
An official website of the United States government
